Notes

OBAFLUORIN, A NOVEL β-LACTONE PRODUCED BY *PSEUDOMONAS FLUORESCENS*. TAXONOMY, FERMENTATION AND BIOLOGICAL PROPERTIES

J. SCOTT WELLS, WILLIAM H. TREJO, PACIFICO A. PRINCIPE and RICHARD B. SYKES

The Squibb Institute for Medical Research P.O. Box 4000 Princeton, New Jersey 08540, U.S.A.

(Received for publication March 24, 1984)

In the past we have reported on the isolation of  $\beta$ -lactones from bacteria; namely *Bacillus* sp., *Pseudomonas* sp. and a soil coryneform<sup>1)</sup>. These molecules in addition to carrying an acylamino group at the 3-position have a 4- $\beta$  methyl group. Here we report on obafluorin, a  $\beta$ -lactone having Fig. 1. Structure of obafluorin.



a *p*-nitrobenzyl group as the 4-substituent (Fig. 1). This paper describes the taxonomy of the obafluorin-producing organism, fermentation conditions and biological properties of obafluorin.

*Pseudomonas fluorescens* SC 12,936 (ATCC 39502) was isolated from a plant specimen obtained in Princeton, New Jersey. Subsequent screening of bacteria isolated from a wide variety of samples and from many different environments has revealed the widespread occurrence of this molecule among *Pseudomonas* strains (Table 1).

The producing strain of *P. fluorescens* SC 12,936 is an aerobic, Gram-negative, motile rod, occurring singly or as short plump diplobacilli. Motility is achieved by means of one or more

Table 1. Collection sites and types of samples yielding *Pseudomonas* strains producing obafluorin.

| Sample                                                 | Site                            |  |  |
|--------------------------------------------------------|---------------------------------|--|--|
| Plant litter                                           | Montgomery Township, New Jersey |  |  |
| Salt marsh mud                                         | Cheesequake, New Jersey         |  |  |
| Forest litter and bracket fungi                        | Great Swamp, New Jersey         |  |  |
| Ferns                                                  | West Windsor, New Jersey        |  |  |
| Rotting oak bark                                       | Lawrenceville, New Jersey       |  |  |
| Elm leaf litter plant material and hay compost         | Princeton, New Jersey           |  |  |
| Sewage aeration tank waters                            | Kingston, New Jersey            |  |  |
| Soil and plant material                                | Hopewell, New Jersey            |  |  |
| Moss, algae and mineral spring water                   | Monessen, Pennsylvania          |  |  |
| Rotting gladiolas                                      | Fairless Hills, Pennsylvania    |  |  |
| Leaf litter and mulch                                  | Waterbury, Connecticut          |  |  |
| Moss and soil                                          | Surbridge Forest, Massachusetts |  |  |
| Silty clay                                             | Hawaii                          |  |  |
| Decaying plants                                        | St. Thomas                      |  |  |
| Red clay soil                                          | Brazil                          |  |  |
| Soil                                                   | Hungary                         |  |  |
| Plant materials                                        | Regensburg, Germany             |  |  |
| Brewery sewage and forest soil                         | Germany                         |  |  |
| Riverbank soil                                         | Hamburg, Germany                |  |  |
| Soil                                                   | Saint Cergue, Switzerland       |  |  |
| Soil                                                   | Johannesburg, South Africa      |  |  |
| Soil, moss, leaves and debris                          | North Wales                     |  |  |
| Soil and plants                                        | Barbados                        |  |  |
| Muds, soils, lichens, fresh and rotting plant material | England                         |  |  |

polar flagella. The organism is oxidative both on triple sugar - iron agar and HUGH - LEIFSON'S O (oxidative)/F (fermentative) glucose test medium. It is cytochrome oxidase positive and is fluorescent on KING's B medium. The following test responses were positive: catalase, arginine dihydrolase and gelatinase. It produces lipase and lecithinase and forms levan from sucrose. The organism does not hydrolyze starch, form indole or accumulate poly- $\beta$ -hydroxybutyrate. The organism can utilize the following as sole carbon sources: D,L-arginine, betaine, trehalose, m-inositol, L-arabinose, sucrose, propionate, and adonitol but not butyrate or ethanol. These characteristics serve to identify the obafluorin producer as P. fluorescens.

Fermentation was initiated by transferring a loopful of surface growth from an agar slant of *P. fluorescens* SC 12,936 into 500-ml Erlenmeyer flasks, each containing 100 ml of the following sterilized medium: yeast extract 0.5%, glucose 0.5%, MgSO<sub>4</sub>·7H<sub>2</sub>O 0.01% and FeSO<sub>4</sub>·7H<sub>2</sub>O 0.01% in a soil extract filtrate\* and tap H<sub>2</sub>O (mixed in a ratio of 1 part filtrate to 4 parts tap water). After inoculation, the flasks were incubated at 25°C on a rotary shaker (300 rpm; 5-cm stroke) for approximately 24 hours. A 1% (vol/vol) transfer of this culture growth was made to fifty

| Table | 2. A | Antibacterial | activity | of | obafluorin. |
|-------|------|---------------|----------|----|-------------|
|-------|------|---------------|----------|----|-------------|

|                       |       | Zone of inhibition (mm) <sup>a</sup> |                       |  |
|-----------------------|-------|--------------------------------------|-----------------------|--|
| Organism              | SC    | Obafluorin<br>(10 µg) <sup>b</sup>   | Ampicillin<br>(10 µg) |  |
| Staphylococcus aureus | 1276  | 8.7                                  | 33.4                  |  |
|                       | 2399  | 7.4                                  | 42.2                  |  |
|                       | 2400  | 7.9                                  | 19.7                  |  |
| Escherichia coli      | 8294  | _                                    | 21.5                  |  |
|                       | 10857 | 10.5                                 | 36.8                  |  |
|                       | 10896 | 12.8                                 | 21.6                  |  |
|                       | 10909 | 13.4                                 | 30.9                  |  |
| Enterobacter cloacae  | 8236  | 9.3                                  | 28.3                  |  |
| Pseudomonas rettgeri  | 8479  | 7.7                                  | 36.5                  |  |
| P. aeruginosa         | 9545  | 9.1                                  | 25.8                  |  |

<sup>a</sup> Inoculum adjusted to Mc Farland 0.5 turbidity standard and tested on K10 agar (pH 6.7) consisting of: beef extract 0.15%, yeast extract 0.3%, peptone 0.6% and glucose 0.1% in distilled water.

<sup>b</sup> Obafluorin, 2 mg/ml in acetonitrile, 5 μl applied to 6.3 mm Whatman #4 filter paper disks.

\* Soil extract filtrate: 1 vol. soil plus 2 vols.  $H_2O$  extracted at 100°C for one hour and filtered.

Table 3. Action of  $\beta$ -lactamases on obafluorin<sup>a</sup>.

| Compound                        | Relative rate of hydro<br>with $\beta$ -lactamase typ |       |     |  |
|---------------------------------|-------------------------------------------------------|-------|-----|--|
| inital radiation 🛦 diamatan and | P99                                                   | TEM-2 | K1  |  |
| Cephaloridine                   | 100                                                   | 100   | 100 |  |
| Obafluorin                      | 4                                                     | 110   | 140 |  |

<sup>a</sup> Assays were performed in 10 mM phosphate buffer (pH 6.0) - EtOH - acetonitrile (320: 80: 3), using lactone at 35  $\mu$ g/ml. Quantitation of hydrolysis was accomplished using HPLC to identify hydrolysis product. Cephaloridine at 35  $\mu$ g/ml was used as a standard under the same conditions, but reaction was followed spectrophotometrically.

500-ml Erlenmeyer flasks each containing 100 ml of the sterilized medium described above. The fermentation was continued for approximately  $17 \sim 18$  hours using the same temperature and rotary shaker conditions described above. Antibiotic production was monitored by a paper disc agar diffusion assay using *Bacillus licheniformis* (SC 9262) as test organism. The antibiotic was isolated and its structure determination will be published elsewhere.

Obafluorin showed weak antibacterial activity against a range of bacteria by disk diffusion (Table 2) but on MIC testing all bacteria tested exhibited values greater than 100  $\mu$ g/ml. Interaction studies of obafluorin with  $\beta$ -lactamases are shown in Table 3. As can be seen, obafluorin was efficiently hydrolyzed by TEM and K1  $\beta$ lactamases and showed some susceptibility to hydrolysis by P99. To our knowledge, this is the first report of a non- $\beta$ -lactam antibiotic showing such a high degree of susceptibility to hydrolysis by  $\beta$ -lactamases.

## Acknowledgments

The authors wish to thank Dr. K. TANAKA for antibacterial data, Dr. K. BUSH for  $\beta$ -lactamase stability studies and Dr. F. G. PILKIEWICZ for HPLC analyses.

## Reference

 WELLS, J. S.; J. C. HUNTER, G. L. ASTLE, J. C. SHERWOOD, C. M. RICCA, W. H. TREJO, D. P. BONNER & R. B. SYKES: Distribution of βlactam and β-lactone producing bacteria in nature. J. Antibiotics 35: 814~821, 1982